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Abstract—We propose here an optimization method for the
placement of storage in networks of prosumers that may both
consume and produce electricity using renewable generators
(DER). In this stochastic context, power imbalances are very
likely, such that the system might lose synchrony and require
control to bring it back to the synchronized state. We consider
the control inputs as being the amount of power injected in the
grid at the chosen storage locations. In a context where generators
and loads are stochastic and not fixed, the optimal placement of
the storages beforehand is not trivial. We model the dynamic as
a system of differential equations and the physical constraints
of the system are included. We then propose and validate an
algorithm based on a submodular optimization that minimizes
the average energy required to control the system.

I. INTRODUCTION

Modernizing the power grid and increasing the share of
renewables in the production are substantial objectives of the
energetic transition. Because of progresses in communication,
data management, and storage, the upcoming emergence of a
power grid "2.0", often called smart grid, appears as a cross-
disciplinary challenge of the 21st century [1].

The today centralized top-down architecture is set to evolve
to more distributed and bi-directional systems. Furthermore,
the emergence of renewable and stochastic distributed energy
resources (DER) in the distribution networks will require more
flexibility. Within these systems, it is assumed that multiple
aggregation levels will be required in order to organize and
optimize communication. Prosumer agents [2] that both pro-
duce and consume electricity will provide services (generation,
load shedding, frequency regulation) against remuneration.
Insure grid stability within this uncertain context appears as a
complex task.

In this paper, we explore the use of storage in a network
of prosumers whose power outputs are susceptible to change
due to various external causes. In such a scenario with a
high penetration of renewables, perturbations in the power
distributions of the prosumers are very likely. Re-balancing the
production and the consumption is then necessary and requires
that we have the capability to control the grid’s dynamic. In
[3], the authors study the placement of storage equipments
within microgrids in a collaborative scheme. The authors
solve an interesting optimization problem mixing placement-
dimensioning of storage with utilization. Moreover, [3] uses
a Nash bargaining framework to determine how prosumers
should share the costs and benefits of the storages. However,

[3] does not take into account the grid dynamic as well as its
controllability. Control of smart grid systems has been recently
studied in [4], where the authors use linear-quadratic optimal
control theory in order to compute DER outputs. Control
inputs rely on information collected by sensors and phasor
measurement units and a communication network is used for
sharing the information. The performance is then studied under
practical limitations such as latency, sampling rate, or signal-
to-noise ratio. The objective of [4] is the control of the system
when perturbations occur. The control signals are used for
adjusting the productions of the DER to some extent, but
storage is not considered within this work.

The present work differs from [3] and [4] in that we study
the placement of the storages from a controllability perspective
in a stochastic context due to DER. Moreover, we aim at
models and methods that could be scalable to some extent.

We are given a prosumer network and we have to find
both the number and locations of the storages that should be
deployed. Once this choice is made, we have to stick with
it whatever perturbations may occur. We are looking for the
smallest set of storages, as well as their locations, that will
require small control energy. Since we do not have any prior
on the future perturbations, we minimize the average control
energy required to move the system around the state space.

The power grid dynamic, where the prosumers powers vary
in function of time, can be represented by a coupled oscillator
network [5]. Each node, representing a prosumer, is modeled
as an oscillator with a phase angle and a natural frequency
that depends on its production/consumption. The oscillators
are interconnected such that their frequencies are impacted by
the ones of their neighbors. As we will see, the phase angles
dynamics can be written as a system of coupled second order
differential equations [5].

Optimal control theory can be used to compute the control
inputs needed to restaure synchrony. However, there is no
guarantee that these inputs will respect the physical constraints
of the system. Electrical lines have indeed maximum capac-
ities, and storages are also limited with bounded rates of
charge/discharge which limit the possible inputs. We incorpo-
rate these constraints in the model such that the control inputs
remain realistic. Furthermore, we propose an optimization
method that uses submodular set functions in order to find
both the number of storages and their locations such that the
average control energy required to maintain stability in this



constrained system is minimized.
This paper is organized as follows, section II presents recent

advances about control in networks, section III introduces
the oscillator model of the grid’s dynamic and derives the
constraints on the control inputs. In section IV we propose
the optimization method for finding the subset of driver
nodes. Finally, in section V, we show performance results and
validation.

II. CONTROL IN NETWORKS

In this section, we introduce some key notions related to
the controllability of complex networks. We consider a graph
G = (V,E) of N nodes, where V is the vertex set and E is the
edge set. The topology of this network can be encoded through
the adjacency matrix M, which element mij ∈ {0, 1} indicates
whether i and j are connected. If the edges are weighted we
can set mij = wij where wij is the weight of edge(i, j),
and zero if there is no edge. Graphs are often used to model
complex interactions inside a population. Let us attribute to
each node i the variable xi that represents the state of node i.
Depending on the model, this state can represent an opinion,
a physical quantity, a probability and so on. If there is an edge
between i and j, we might expect some interaction that would
eventually change the values of xi and xj . Such a dynamic
is usually described with a system of differential equations.
If we assume a linear first order dynamic, this can be written
as Ẋ(t) = AX(t), where X(t) = {x0(t), ..., xN−1(t)} is the
vector of node states at time t, and matrix A encodes both the
dynamics and the topology of the system (A can be, among
other, the weighted adjacency matrix of the underlying graph).

If there is no action from the outside, the system state will
evolve according to X(t) = X0e

At where X0 is the initial
state of the system. Imagine now, that this dynamic could be
somehow influenced by injecting some signals. More precisely,
let us assume that we can inject these signals in a subset of the
nodes, called drivers, such that the dynamics becomes Ẋ(t) =
AX(t) + Bu(t), where the matrix B indicates which nodes
receive the signals and u(t) is the vector of inputs at time t.
Assume that the system is in some initial state X0 and we
aim at bringing it to some final state XT in some amount
of time T. Control can be seen as finding the sequence of
inputs {u(t0), ...u(tT )} that would do it given the dynamics
A. Furthermore, we say that the system is controllable in T
steps if it can be steered from any initial state X0 to any final
state XT through a sequence of control inputs.

It was shown by Kalman that a linear system
(A,B) is controllable if the controllability matrix
C = [B,AB,A2B, ..., AN−1B] has full rank, that
is, rank(C) = N . Nevertheless, when studying the
controllability of non trivial networks, using the Kalman’s
criterion is not a simple task since matrix C becomes huge.
Furthermore numeric precision becomes quickly an issue
when computing the rank of C. A different approach to study
controllability in complex network was introduced later on
by Lin [6]. This relates the search of the minimum driver
set to a maximum matching in a bipartite graph, which can

be done with the Hopcroft-Karp algorithm in O(|E|
√
|V |)

in the worst case. This requires that the system (A,B) is a
structured system, meaning that all elements in A and B are
either fixed zeros or independant free parameters. In such
a situation, structural control is extremely powerfull since
it allows to discuss network control easily even if the exact
weights of the edges are unknown. Note however that the
independance of the parameters is a key assumption. If A is
the adjacency matrix of an undirected network for instance,
independance is not verified (since A is symmetric). In this
case, one should use different tools to study controllability
[7].

The fact that a system is controllable or not is not the only
criterion of interest. Indeed, if it is controllable, the amount
of control energy required also appears as a key criterion.
Actually, if the system is controllable, there might be more
than one sequence of control inputs u(t) that could drive it
from X0 to XT . Among all these possibilities, optimal control
is devoted to find the sequence that minimizes some cost
function that can depend on the states of the system X(t), the
control inputs u(t), and the final state XT . In the following,
these control inputs will be used to model the actions of
storage devices in a power grid. We are therefore particularly
interested in the sequence that requires the minimum amount
of control energy [8]. Let E =

∫ T
0
‖u(t)‖2dt be the energy

used for the control of the system. It can be shown [9] that
the control inputs that minimize E can be written as :

u?(t) = BT eA
T (T−t)W−1(T )vf (1)

where νf = XT − X0e
AT is the difference between the

desired final state XT and the final free state X0e
AT , and

W (t) =
∫ t

0
eAτBBT eA

T τdτ is called the Gramian matrix of
the system. It can also be shown that the system is controllable
if and only if the Gramian is not singular, and that its rank
indicates the dimension of the controllable subspace. Besides,
the minimum control energy associated with the inputs u?(t)
can be written as :

Emin = νTf W
−1(T )νf (2)

In cases where W is not invertible, the pseudo-inverse W †

can be used to obtain similar information in the controllable
subpsace.

III. MODEL DESIGN FOR POWER GRID DYNAMICS

A. Grid dynamic without constraint

In this section, we introduce the coupled oscillators network
model used to simplify the power grid dynamic. More details
can be found in [5].

The objective is to achieve synchronization of the grid at the
main frequency Ω = 50Hz. Each oscillator i has a phase angle
δi and a frequency δ̇i. Therefore, we seek an equilibrium of the
form : ∀i, δ̇i = Ω. For convenience, we express the dynamic
of the oscillators in terms of the deviations from the main
frequency : δi(t) = Ωt + θi(t). Let ωi = θ̇i, such that δ̇i =

2



Ω +ωi. The equilibrium, in terms of the deviations dynamics,
is : ∀i, ωi = 0

The next step consists in translating the dynamics of the
generators and machines into equations involving the phase
angles θi and the frequencies ωi. Generators and machines
are composed of a turbine that dissipates energy at a rate
proportional to the square of the angular velocity :

Pdiss,i(t) = KDi(δ̇i(t))
2 (3)

where KDi is the dissipation constant of entity i. Furthermore,
it also accumulates kinetic energy at a rate :

Pacc,i(t) =
1

2
Ii
d

dt

(
δ̇i(t)

2
)

(4)

where Ii is the moment of inertia of entity i. For simplic-
ity, we consider that all entities have the same dissipation
constants(KD) and moment of inertia (I).

The condition for the power transmission between i and j
is that the two devices do not operate in phase. The phase
difference between i and j is : δj(t) − δi(t) = Ωt + θj(t) −
Ωt − θi(t) = θj(t) − θi(t). The transmitted power along the
line can be written as :

Ptransmitted = −PMAX
ij sin(θj − θi) (5)

with PMAX
ij being the maximum capacity of the line (i, j).

Each entity i is then described by a power balance equation
of the type :

PS,i = Pdiss,i + Pacc,i + Ptransmitted,i, (6)

where PS,i is the power of an ideal source or sink at node
i. By substituting equations 3, 4, and 5 into equation 6 and
re-arranging the terms, we obtain the following non-linear
coupled system of equations :

PS,i = IΩθ̈i +
[
Iθ̈i + 2KDΩ

]
θ̇i +KDΩ2

+KD θ̇i
2 −∑j∈Ni

PMAX
ij sin [θj − θi]

(7)

We now use simplifications based on the fact that we
consider small deviations from the main frequency : δ̇i ∼ Ω
which means that ωi = θ̇i << Ω, such that the squared term
KD θ̇

2
i can be neglected. Moreover, we assume that the rate at

which energy is stored in the kinetic term is much less of the
rate at which energy is dissipated by friction : θ̈i << 2KD

I
(see [5] for more details). Equation 7 becomes :

θ̈i ∼ ψi − αθ̇i −
∑
j 6=i

Kijsin [θj − θi] , (8)

where α = 2KD

I is the dissipation term, Kij =
PMAX

ij

IΩ are
the coupling strengths, ψi =

[
PS,i

IΩ − KDΩ
I

]
. In order not to

overload the equations, we simplify the constant term KDΩ
I

by working in a rotating frame such that ψi =
PS,i

IΩ .
The dynamic is still non linear because of the sine coupling.

Therefore, we also assume that the phase angle differences

are small such that sin [θj − θi] ∼ θj − θi. By using vector
notations, the dynamic can be written in the following form :

θ̈ = Ψ− αθ̇ − (K ◦ L)θ (9)

Where A ◦ B represents the Hadamard product between
matrices A and B, and L is the Laplacian matrix of the
underlying topology (Lij = ki if i = j and Lij = −mij

otherwise). Equation 9 is a continuous time second order linear
system of N equations.

By introducing X =

 θ

θ̇
1

, we transform this into a first

order linear system of 2N + 1 equations, which is discretized
with time step ∆t, leading to :

X(t+ ∆t) = AX(t) (10)

With transition matrix A :

A =

 I I∆t 0
−(K ◦ L)∆t (1− α∆t)I Ψ∆t

0 0 1

 (11)

Note that the transition matrix A encodes all the system
parameters, topology, and power distribution. So far we have
expressed the grid dynamic as a coupled oscillators network,
but we did not incorporate the different physical constraints
on the network.

B. Flow Constraints

[10] showed that a condition for synchronisation in a
coupled oscillators network is ‖L†ω‖∞,E ≤ sin(γ), where L†

is the Moore-Penrose pseudo inverse of the Laplacian matrix
of the network, ω is the vector of the natural frequencies
of the oscillators, and ‖x‖∞,E = max(i,j)∈E |xi − xj |. If
this condition is satisfied, the oscillators synchronize at the
common frequency ωSY NC with the phase lock |θi − θj | ≤
γ ∈ [0, π2 ], ∀(i, j) ∈ E.

On the other hand, the power that flows on line (i, j) ∈
E can be written as Pi−→j = −PMAX

ij sin (θj(t)− θi(t)).
If θj(t) − θi(t) is small, the flow constraints at time t are
straightforward :

∀(i, j) ∈ E, | θj(t)− θi(t) | ≤ 1 (12)

If these constraints are verified for all instants t during the
control phase then no line gets overloaded by the action of
the control inputs. Writing the synchronisation condition in
our settings thus gives :

‖ (L ◦K)
†

Ψ‖∞ ≤ sin(1) (13)

If constraint 13 is satisfied, the oscillators synchronize to a
common frequency ωSY NC =

∑N
k=1 Ψk∑N
k=1 αk

=
∑N

k=1 PS,k

IΩNα .
Since the dynamics is expressed in term of deviations from

Ω, synchronization at Ω is achieved if ωSY NC = 0. Which
gives the production consumption balance constraint :
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N∑
k=1

PS,k = 0 (14)

Constraints 12 13 and 14 ensure that the system is able to
synchronize at Ω without overloading lines.

C. Battery Constraints

A storage i has a maximum charge/discharge rate ri, some
amount of energy stored Λi(t) at time t, and a maximum
capacity Λi,MAX . We assume that all maximum rates (r) and
all maximum capacities ΛMax are the same accross the storage
equipments. We also denote by Λ(t) the vector of energy level
at time t. Since u?(t) specifies the control inputs, the energy
level dynamic of the batteries is Λ(t+∆t) = Λ(t)−u?(t)IΩ.
Which can also be written as :

Λ(t) = Λ(0)− IΩ

t∑
k=0

u?(k) (15)

where Λ(0) is the vector of initial levels in the batteries.
Obviously, Λ(t) has to stay within possible bounds : ∀t, 0 ≤
Λ(t) ≤ ΛMAX . Which can be written in terms of the control
inputs :

∀t,−Λ(0)

IΩ
≤ −

t∑
k=0

u?(k) ≤ ΛMAX − Λ(0)

IΩ
(16)

During each time slot, the battery cannot charge or discharge
at a rate higher than r :

∀t, | u?(t)IΩ | ≤ r (17)

We now arrive at the main question of the present paper,
given the dynamic of equation 10 and the constraints of
equations 12, 13, 14, 16, and 17, how can we select the driver
nodes such that we use low control energy on average ?

IV. FINDING THE DRIVER NODES

In this section, we explain the method that we used in order
to find the driver nodes for the grid’s dynamic (eq. 10).

A. Gramian based optimization

Recall that Emin (see eq. 2) depends on the initial and final
states as well as on the inverse of the gramian matrix W,
which only depends on A and B. W can thus be used to obtain
information about the average control energy required to move
the system in the state space. In the prosumer network that we
consider, generators and loads (Ψ) are suceptible to change,
meaning that initial (X0) and final (Xf ) states might also vary.
In such a scenario, we prefer to aim at good performance on
average, rather than very good performance in few specific
cases and bad performance in all other situations.

Since the control energy is related to W−1, systems with
"large" W will tend to be controlled with low energy. Still,
this notion of "large" W is not very accurate and we need to
quantify it by taking some metric based on W. We already
mentioned the rank of W as being the dimension of the

controllable subspace, but it is also known that the trace of
W and W−1 give information about average controllability
and average control energy [11]. In such a situation, we can
build a set function that, given a set of driver nodes S, returns
the value of one of these metrics. Indeed, given A and S,
we can obtain the system dynamics (A,BS) and compute the
gramian WS . In other word, such a function would quantify
the ability of a given set of nodes to contol the system on
average. The objective would then be to find the set S?k of
size k that maximizes this function.

A key point, demonstrated in [11], is that the set function
F : S −→ Tr[WS ] is modular and the two functions F :
S −→ Tr[W−1

S ] ans F : S −→ rank[WS ] are submodular.
As we will see in the next section, this nice result enables
us to look for the driver node set that optimizes the average
control energy with a simple greedy heuristic that also provides
a worst case guarantee.

B. Submodularity

We introduce here submodular set functions and explain
how their maximization can be achieved in reasonable time.
More information about submodularity can be found in [12].

A set function F : 2V −→ < defined over a finite set V
is said to be submodular if for all sets X,Y ∈ V , such that
X ⊆ Y and for all element x ∈ V \ Y , we have :

F (X ∪ {x})− F (X) ≥ F (Y ∪ {x})− F (Y ) (18)

This basically means that submodular functions exhibit a
diminishing return property which makes them particularly
interesting for optimization. Generally speaking, finding the
set S?k of size k that maximizes a set function F is a difficult
problem because the number of sets grows exponentially with
the number of nodes. Therefore complete enumeration and
evaluation is only feasible on very small examples. Never-
theless, if the set function is submodular, a simple greedy
heuristic returns a solution S?k such that, in the worst case,
F (S?

k)

F (SOPT
k )

∼ 63% (where SOPTk is the optimum set of size k)
[12]. This heuristic starts with a set S (possibly empty) and
iteratively adds the element i that exhibits the highest marginal
gain : F (S ∪ {i}) ≥ F (S ∪ {j}) ∀j.

For a ground set of N elements, this heuristic computes F
k(2N−k+1)

2 times. Since the evaluation of F can be costly, a
well-known lazy-greedy variation has been proposed by [13].
This smart implementation uses the submodular structure of
the marginal gains in order to reduce the number of calls to F.
This requires to maintain a sorted table of marginal gains for
all elements. When looking for new element i to add to set S,
the top one is selected and the new marginal gain F (S∪{i})−
F (S) is computed. If this gain is larger than the gain of the
second element in the table, then i is added to S. Otherwise
i is inserted back in the table with its updated gain and the
same treatment is applied to the element that is now on the top
of the table. Because of the submodularity of F, this method
performs as well as the original one, but can result in speedups
of several order of magnitudes.
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Figure 1: At t = 800, P5 goes from −1 to −2 (power
inbalance). Consequently, the frequencies θ̇i deviate from the
synchronized state. At t = 1000, optimal control inputs (see
equation 1) are injected at nodes 0, 2, and 4 (nodes with
ellipses) such that the system is brought to the synchronized
state at time t = 1500 (control time T = 500).

Theoretically, we are now able, for a given prosumer
network, to compute A, B, and W. For some trajectory in
the state space, we can use equation 1 to find the optimum
control inputs. However, these inputs do not take into account
the physical constraints on the possible trajectories due to lines
and batteries finite capacities.

C. Optimization with grid constraints

Finding the driver set Sk of size k using the gramian
WSk

of the system (A,BSk
) does not require initial and

final states. Besides, WSk
does not depend on the modified

power distribution Ψ of the nodes. We are indeed looking for
k controllers that perform well on average over all possible
situations. On the contrary, the constraints derived above (eq.
12, 13, 16 and 17) are bounded to a particular trajectory in the
state space. We indeed check wether the power grid can sustain
the controlled dynamics when transitioning from a given initial
state to a target final state. As we do not know what these states
could be, we could use multiple scenarios and test wether
Sk can control the system without violation of constraints. In
this paper, we use a slightly different approach. We consider
that the system is initially at equilibrium (all elements are
synchronized at Ω) and that control will be necessary if a
perturbation (power inbalance) occurs and takes the system
out of equilibrium (see figure 1). Depending on how much
time we need to start the control phase, the state of the system
(the initial state for control) might be "somewhere around" the
synchronized state. In order to test wether a set Sk can control
the system without violation of constraints, we sample initial
states within some hypersphere centered on the synchronized
state and check all the constraints. If for all trajectories, the
constraints are respected, then we consider that Sk enables the
control of the system.

Increasing k means that we deploy more strorage which
increases the costs but tends to lower the energy required as
we will see in the next section. Using the submodularity of
the set functions introduced above, we can build a sequence
of growing sets S1 ⊂ S2 ⊂ ... ⊂ Sk and stop as soon as Sk
enables the control of the system for some k.

Algorithm 1 Optimization with grid constraints
k = 0
Sk = ∅
while Not Constrained control do

k ← k + 1
Sk = Sk−1 ∪ argmaxi∈N\Sk−1

F (Sk−1 ∪ {i})
end while

V. RESULTS

The purpose of selecting the drivers according to a Gramian
related metric is to minimize, on average, the amount of
control energy needed. Conversely, if we select the drivers
randomly, we expect to need, on average, more energy to
control the system. In figure 2, we compare the average
control energy E in function of the proportion of drivers
among the total number of nodes nD = ND/Nnodes, for a
set of drivers selected thanks to our algorithm with randomly
selected drivers (in both cases overloading and battery limits
constraints are satisfied). We draw 104 scale-free topologies
with 50 nodes, and random power distributions and line
capacities. For each system we select a random number of
drivers ND ∼ U(1, Nnodes) and we find two driver sets of
size ND. One is chosen randomly and the other is found with
algorithm 1. For both sets, if the control is possible, we draw
a random initial state Yi and a random final state Yf , and we
compute the control energy required for driving the system
from Yi to Yf . Since the algorithm is based on Tr[W−1],
we could plot Tr[W−1] in function of nD but we prefer to
validate our method by computing the actual average energy.
As expected, both curves decrease as the number of drivers
increases, meaning that, as the number of drivers grows, the
average control energy tends to decrease, but we tend to use
less energy when the drivers are selected with our algorithm.
Note that this difference tends to zero when nD tends to
one, because almost all nodes are then selected, yielding little
flexibility for optimization.

We investigate next how the topology of the grid and the
physical constraints affect the minimum size of the driver
set. nD is no longer selected randomly, but minimized. We
consider the simple case of an Erdös-Rényi topology with
probability of connection p. We show on Figure 3 how the
minimum size of the driver set evolves with p for different
Gramian based metrics and for two levels of constraints :
• Level 1 : full control and grid constraints (see section III).

The system is controllable (i.e it can be moved from any
point to any other point) and under the constraints (i.e it
can be moved without overloading any line or breaking
any battery limits).
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Figure 2: log(E) against nD for random and optimized driver
sets (Nnodes = 50).
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Figure 3: nD against link probability p for erdos-renyi topolo-
gies (N = 100). Curves are averaged over 100 realizations.
The top three curves show the results for the three metrics
taken into consideration when all constraints are considered
(see Level 1 in the main text). The bottom three curves
exhibit the results for the same metrics when only the full
controllability constraint is considered (see Level 2).

• Level 2 : full control only : the system can be moved from
any point to any other point of the state space, without
considering any overloading or battery limit constraints.

When p ∼ 0, nodes tend to be very poorly connected such
that we need to control almost all nodes in the grid. As p
increases, the connectivity of the graph rises and the number
of drivers decreases. At some point, the connectivity of the
graph starts to harm its controllability, and more drivers are
needed (this effect is in accordance with the litterature). As
expected, the driver sets for the level 1 of constraints are larger
than for level 2 (for all metrics) because we impose far more
constraints on the control inputs.

VI. CONCLUSION

In this paper, we considered the case of networks of
prosumers which can behave as generators or loads depending

on weather conditions. We proposed an optimization method
of the storage placement in such a stochastic context through
the optimal control theory. This approach enabled us to take
the grid’s dynamic and its physical constraints into account.
Because perturbations could be of any kind and thus the
control in any direction of the state space, our optimization
method relies on submodular set functions and the gramian
matrix, for minimizing the average energy that should be
injected or absorbed by the storage equipments.

We believe that interesting work could be done by com-
bining this model with real production and consumption data.
There are indeed complex spatial and temporal correlations
that impact these distributions [14]. In contrast, we considered
that the control has to be in average in any direction of the
state space but confronting this assumption with real traces
could lead to interesting further research.
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