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Abstract

We study the interplay between social ties and financial transactions made through a
recent cryptocurrency called Ğ1. It has the particularity of combining the usual
transaction record with a reliable network of identified users. This gives the opportunity
to observe exactly who sent money to whom over a social network. This social network
is a key piece of this cryptocurrency, which therefore puts much effort in ensuring that
nodes correspond to unique, well identified, real living human users, linked together
only if they met at least once in real world. Using this data, we study how social ties
impact the structure of transactions and conversely. We show that users make
transactions almost exclusively with people they are connected with in the social
network. Instead, they tend to build social connections with people they will never
make transactions with.

Introduction
When seeing two friends inviting each other, who could tell whether they are friends
because they invite each other regularly, or if they invite each other regularly because they
are friends? Such questions are common in systems where interactions occur over a social
network. Obviously, interactions happen preferentially between socially connected indi-
viduals, but new ties are also created or reinforced through interactions. Understanding
the mechanisms driving the evolution of these systems is an active field of research.
Most of the time, the social network is unknown and one can only record the inter-

actions over time using various kinds of sensors. In such settings, a classical problem
consists in infering the network from traces of interactions. With the developement of
GPS and Bluetooth equiped devices such as smart phones, interaction data get more and
more available, and there is a growing need to design efficient algorithms to infer the
underlying relationships between entities. Alternatively, one may also study the opposite
problem where the network is known and one wishes to infer associated interactions.
Solving this kind of problems have various applications from trafic simulation to anomaly
detection. Nonetheless, these problems are difficult to solve, and even difficult to study
because of the lack of suitable data sources. We believe that better understanding the
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underlying mechanisms at play in such complex systems is a useful step within this line
of work.
In this paper, we thus investigate the interplay between social ties and financial trans-

actions using real data from a specific cryptocurrency. Similarly to friends inviting each
other, we wish to better understand whether transactions occur between individuals who
were already socially connected, or if individuals build a new tie because they are involved
in regular trades. Studying these questions is often challenging because financial transac-
tions are often considered as sensitive data, and rarely made public; even when they are,
interactions are anonymized.
In 2008, the blockchain technology (Nakamoto 2009) opened the doors to new virtual

currencies which do not rely on a central authority. Transactions are written in a public
distributed ledger, such that anybody can obtain the full list of transactions. Since then,
the number and diversity of applications relying on the blockchain has been continu-
ously growing (Al-Saqaf and Seidler 2017; Hileman and Rauchs 2017). Although Bitcoin
is still a benchmark cryptocurrency (Hileman and Rauchs 2017; Gohwong 2018), many
new currencies relying on different kinds of blockchains have been introduced since then
(Gohwong 2018). Most provide (to some extent) anonymity to the entities making trans-
actions. Indeed, users of these systems are often encouraged to create a new address when
they want to make a new transaction, making the association of users and addresses a
problem on its own (Meiklejohn et al. 2013; Remy et al. 2018). Some heuristics have been
proposed to tackle this challenge but they mostly work for big users and they are difficult
to assess. In addition, even if users were identified properly, underlying social ties would
remain unknown.
The Ğ1 (BL et al. 2017) cryptocurrency under study in this paper relies on explicit social

ties to strengthen the robustness of the system. It maintains an accurate network of iden-
tified users with reliable social ties, and uses it for monetary growth. This offers a unique
opportunity to study the interplay between financial transactions and social ties between
human beings of a specific community.

RelatedWork

Inferring relations from interactions

Scientific works tackling the general problem of inferring a network of social relationships
from a sequence of interactions span several domains from sociology to computer sci-
ence. With the increase of geotagged data availability due to the popularization of smart
phones and other GPS equipped devices, a large portion of these studies focuses on the
inference of social ties from mobility traces. Indeed, social networks are embedded in
geography such that it is commonly assumed that interacting probability increases with
physical proximity. For instance, the authors of Toole et al. (2015) use a call detail records
(CDR) to explore the interplay between mobility and social ties, while the authors of
Xu et al. (2019) rely on transactions made through student ID cards to build the students’
social network.
It is well-known that all social relationships are not equivalent (Bapna et al. 2017; Xiang

et al. 2010). Indeed, they can, among other things, be of different nature and have differ-
ent strength. Being able to not only infer social ties from interactions, but also quantify
their nature and strength is a key challenge within this line of work. In this direction,
the authors of Gelardi et al. (2019) study the interactions in a group of baboons in which
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they observe proximity and grooming as bounding activities. Similarly, the authors of
Kobayashi et al. (2019) present a method to filter strong ties from temporal networks of
interactions. Their method computes for each pair of nodes the distribution of their num-
ber of interactions in a null model based on node activities. Significant pairs of nodes are
thus defined as those with a number of interactions that cannot be explained by the null
model.
Slightly different studies aim at predicting missing links of a network from known links

or other external features. For example, the authors of Crandall et al. (2010) use the prox-
imity, in space and time, of geo-tagged photographs over the Flickr social network to
infer the likelihood of a social tie between users. This paper shows that this probability
increases by orders of magnitudes as the number of co-locations increases. Focusing on
topological features, the authors of Hristova et al. (2016) explore the combined effect of
multiple social networks for link prediction. More precisely, they represent social ties as
a multiplex network where each layer represents a specific social platform, and they show
how this additional information can be used to improve link prediction.
In Khosravi et al. (2013), the authors investigate link strength prediction in a social

network based on social transactions (likes, comments, etc). They propose a new type
of multiple-matrix factorization model for incorporating a transaction matrix between
users, and test their method on Cloob (Cloob), a popular Iranian social network where
users can rate their friendship relationships.

Inferring interactions from relations

If inferring the network of relationships (or missing links of this network) from traces
of interactions is often studied, the inverse problem of simulating traces of interactions
from the network is also an interesting area of research. In Barrat et al. (2013) for exam-
ple, the authors propose a procedure to generate dynamical networks from any weighted
directed graph. This graph is considered as the accumulation of paths between its nodes,
and the proposed procedure unfolds these paths using random walks of variable lengths.
The authors show that their approach is able to generate dynamical networks with bursty,
repetitive, or correlated behaviors.

The case of financial transactions

Pioneering work studying both the nature and strength of social ties as well as the way
people make transactions can be found in social sciences. In Zelizer (1996) for exam-
ple, the authors propose to split payements into three categories: gifts, entitlements,
and compensations, and show that each category corresponds to a specific set of social
relationships and systems of meanings.
More recently, the authors of Martens and Provost (2011) use real but anonymized

transaction records to infer a pseudo-social network of users in which two users are con-
nected if they transfered money to the same entity. Then, they use this pseudo-social
network for social targeting and obtain better performances than traditional models.
To the best of our knowledge, there is no previous work studying financial transactions

and social interactions simultaneously from a reliable data source, even in specific set-
tings. The recent development of cryptocurrencies is creating new opportunities for this
kind of studies. Contrary to transactions relying on usual payment methods, blockchain
based transactions are public and can be analyzed freely as long as the blockchain itself
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is public. In Kondor et al. (2014), for instance, the authors extract the transactions from
the Bitcoin blockchain and build the network of transactions. They provide a graph-based
analysis of this network and show that linear preferential attachment drives its growth.
In Popuri and Gunes (2016) the authors study the network of transactions of both Bit-
coin and Litecoin, while the authors of Maesa et al. (2019) recently studied the structure
of the Bitcoin users graph, exhibiting a bow tie like structure between its components.
In Kim et al. (2016), the authors analyzed user comments in online communities of Bit-
coin, Ethereum, and Ripple to predict the price and number of transactions in these
cryptocurrencies.
The main limitation is often that, in most of these systems, most public keys are used

only once such that there is no obvious way to link real users to the set of keys they used
to make transactions (Meiklejohn et al. 2013; Remy et al. 2018). In addition, even if users
were identified properly, underlying social ties would remain unknown.

Our contribution

In this paper, we study a specific cryptocurrency which offers both a recording of trans-
actions and of social bounds between identified human beings. This means that we know
exactly who sent money to whom and when. Our main objective is to understand the
interplay between these transactions and social ties between users.
More precisely, we first explore whether users start making transactions before creating

a tie, or if they tend to make transactions with people they are already friends with. Going
further, we study the different neighborhood structures and their evolution over time.We
tackle questions such as: Are my transaction partners the same as my friends? How do
my friends exchange between them compared to my transaction partners? Are my friends
and transaction partners more and more homogeneous over time?
As we will see in “Dataset and link stream modeling” section, although the data is

rather simple at first glance, the proper modeling of interactions is challenging and no
unique, commonly accepted approach exists. We leverage here the recently introduced
link stream model, which captures both the temporal and structural nature of data (Lat-
apy et al. 2017; Latapy et al. 2019). We start our analysis with basic metrics targetting the
questions above and we define link stream concepts as we need them in the analysis.
Therefore, our contribution is two-fold: it gives a modeling of the data that incorporates

time and structure and it sheds lights on fundamental questions on the interplay between
transactions and social ties, in the Ğ1 system. These insights are important for progress
in several areas, like in particular the inference of social networks from interaction traces.
This paper is organized as follows. “The Ğ1 cryptocurrency” section introduces the Ğ1

cryptocurrency and explains the main ideas and mechanisms behind it. In “Dataset and
link stream modeling” section, we present the dataset under study and show how link
streams model interactions from this dataset. In “Overview of certification and transac-
tion streams” section, we use time series and static graph concepts to give a first insight
on the global structure and dynamics of the system. In “How do new certifications and
transactions appear between members?” section we consider time and structure together
but stay at a basic link level in order to understand the interplay between social ties and
transactions. Finally, in “Certifications and transactions neighborhoods” section we use
more complex stream concepts mixing time and structure in order to investigate this
interplay further.
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The Ğ1 cryptocurrency
Ğ1 (BL et al. 2017) was introduced in France in March 2017 and relies on two kind of
accounts: member and anonymous accounts. Both types are linked to a pair of crypto-
graphic keys enabling them to make transactions. In the following, we denote by V the
set of all accounts involved in Ğ1, and byM ⊆ V the subset of member accounts. There-
fore, the set A = V \ M contains all anonymous accounts. The top plot of Fig. 1 shows
how the total number of anonymous and member accounts evolved since the currency’s
creation in March 2017. At the time we downloaded the blockchain, in April 2019, there
were 3872 accounts, among which 2128 member accounts.
While there is no control over the ownership of anonymous accounts, identification of

entities behind member accounts is a key concern. Indeed, it is essential that a member
account belongs to only one real and living human being, meaning that institutions such
as companies or services have to rely on regular anonymous accounts. This constraint is
linked to the monetary growth mechanism implemented within Ğ1: each day the mone-
tary mass increases and new units of the currency are injected in the system. These new
units are distributed evenly between members such that each member receives exactly
one share of the monetary growth.
This amount of money that members receive every day is called the universal dividend

and is denoted by UD in the following. The growth rate of the monetary mass depends
on the number of members |M| in the system and is updated every six months in the
current implementation (BL et al. 2017). The purpose of this inflation mechanism is two-
fold: first, it ensures that all members of a given generation are equal in terms of currency
creation. Second, it ensures that the relative value of a dividend is constant over time,
and that no generation is privileged over another by the currency creation itself. These
two concepts were developed in Laborde () as the spatial and temporal symmetries of a
currency, and Ğ1 is, to the best of our knowledge, the first cryptocurrency implementing
them.

Fig. 1 System growth. Top - Evolution of the number of public keys (|V|, red curve) and members (|M|, blue
curve) since the currency’s creation in March 2017. Bottom - Evolution of the number of certifications
(yellow curve), transactions (red curve) and transactions between members (blue curve)
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It is easy to see that most currencies, independantly of their use of the blockchain, do
not implement these rules: some individuals benefit from the monetary creation at the
expense of others (Kondor et al. 2014; Rose 2015). With fiat currencies, creation of new
units is often a priviledge given to states and banks and remains obscure to most citizens.
One of themain objectives of Laborde () is to show that a currency can fulfill its purpose of
enabling transactions of goods, while preserving fairness and equity in terms of monetary
creation.
In order to identify its members, Ğ1 maintains a web of trust (WoT) between them.

A link from person a ∈ M to person b ∈ M in the WoT is called a certification and
means that a certifies that b is a real living human being, with no other member account:
�b′ ∈ M, identity(b′) = identity(b). Members of the system wishing to participate
in the currency creation process must hold enough certifications at all time and sign
a license in which they commit to only give certifications to persons they know and
trust.
When there is a pre-existing social tie between two persons, a certification can be

seen as a projection of this bound, meaning that all possible relationships (familly, work,
friends...) get encoded as certification links because they imply enough trust. For two
persons who don’t already know each other, these links need to be built, which involves,
most of the time, real life meetings. The Ğ1 community organizes regular local social
events to facilitate the construction of these links. A certification graph, i.e. a web of
trust, is thus a simplification of the real social network in which different types of co-
existing relationships are encoded in the same type of bound. Despite this simplification,
a certification link is supposed to exist only between human beings who have met at
least once in real life, which might be more than one can expect in other online social
networks. Therefore, we assume in this paper that certification links accurately reflect
social ties strong enough to imply trust between members. In addition, certifications
expire and have to be renewed which means that members have an incentive to build
new connections in order to ensure their status. Moreover, building new connections
between members is a way to reinforce the web of trust and protect the system against
sybil attacks. The bottom plot of Fig. 1 shows the evolution of the number of certi-
fications in the WoT, which increases up to 19049 certifications for 2128 members in
April 2019.
Transactions can be done between any kind of accounts, members or anonymous.

There is no transaction rate, and the only ways to earn currency units are either to
receive them from someone already having coins (by selling an item or a service for
example), or to become a member and earn the daily universal dividend. The bot-
tom plot of Fig. 1 shows the evolution the overall number of transactions in the
system and of transactions between members. In April 2019, there were 38296 transac-
tions in the blockchain, among which 11345 occured between members. Transactions
are written in the blockchain by miners against retribution. A large difference with
other cryptocurrencies like Bitcoin is that miner retributions come from donations
and not from the process of mining itself. Indeed, the money creation is done by the
members themselves through the universal dividends and has nothing to do with min-
ing. In order to compensate the miners for their voluntary work, there is a special
account in Ğ1, called Remuniter, which receives donations and uses them to retribute
miners.
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Dataset and link streammodeling
All the data we consider here is extracted from the Ğ1 blockchain, which is publicly
available (G1 blockchain explorer). It contains three key pieces of information: identities,
certifications, and transactions. An identity associates a public key to a user name.

Definition 1 (Certification) A certification is a directed link between two members u ∈
M and v ∈ M and can be represented as a (t,u, v) triplet, meaning that entity u certifies
entity v at time t.

Definition 2 (Transaction) A transaction is a directed weighted link between two public
keys (member or not) u ∈ V and v ∈ V, and can be represented as a (t,u, v, a) quadruplet,
meaning that entity u sends an amount a to entity v at time t.

This data has both structural and temporal components which make its analysis far
from trivial. Classical methods such as static graphs or time series simplify data and infor-
mation is lost in the process. In this paper, we use link streams, rencently introduced in
Latapy et al. (2017) and Latapy et al. (2019). Below, we give basic link stream notations
and we refer the interested reader to these papers for more details.

Link streams

Definition 3 (Directed Link Stream) A directed link stream L is a triplet (T ,V ,E)where
T is a set of time instants, V is a finite set of nodes, and E ⊆ T × V × V is a set of directed
links. Having (t,u, v) ∈ E means that u is linked to v at time t.

Figure 2 displays an example with four nodes a, b, c, and d (node labels are represented
on the y-axis) over a time period going from t = 0 to t = 6 (time is represented on the
x-axis). Each interaction (t,u, v) is represented as an arrow going from the horizontal line
corresponding to node u to the one of node v at time t. For example, interaction (2, b, a)
appears as an arrow between a and b at time t = 2.
Since link streams encode both time and structure, it is natural to define the graph

induced by a stream and the activity of a stream:

Definition 4 (Graph Induced by a Stream) The graph induced by a directed link stream
L = (T ,V ,E) is G (L) = (

V ,E
)
in which two nodes are linked if they interacted at least

once in L, i.e. E = {(u, v) , ∃ (t,u, v) ∈ E}.

Fig. 2 Example of a directed link stream L = (T , V , E) with T = [0, 6] ⊆ R, V = {a, b, c, d}, and
E = {(0, c, b), (0, a, d), (1, d, a), (2, b, a), (2, c, d), (4, c, b), (4, b, d), (5, a, b), (5, b, c), (5, d, c), (6, a, b), (6, d, a)}
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Definition 5 (Activity of a Stream) The activity of a link stream L = (T ,V ,E) is defined
as the number of active links as a function of time, ie aL (t) = |{(u, v) , (t,u, v) ∈ E}|.

Modeling certifications and transactions using link streams

Definition 6 (Certification Stream C) We denote by C = (TC ,M,EC) the stream of
certifications between members:

• TC = [1488987127, 1555054577] ⊆ R is the time interval going from the first
certification (on 2017-03-08 15:32:07) to the latest one considered in this study (on
2019-04-12 07:36:17)

• EC is the set of certification links: (t,u, v) ∈ EC if u certifies v at time t (see
Definition 1).

Definition 7 (Transaction Stream T ) We denote by T = (TT ,V ,ET ) the stream of
transactions:

• TT = [1488990898, 1555052722] ⊆ R is the time interval going from the first
transaction (on 2017-03-08 16:34:58) to the latest transaction considered in this
study (on 2019-04-12 07:05:22)

• ET is the set of transaction links: (t,u, v) ∈ ET if u sent a payment to v at time t (see
Definition 2).

Notice that T is defined over the node set V and contains transactions between mem-
bers and anonymous accounts. We can define the substream induced by a set of nodes as
the stream of links between these nodes (see Latapy et al. (2017) for details). Transactions
can thus occur between member accounts (elements of M ⊆ V ), between anonymous
accounts (elements of A ⊆ V ), or between member and anonymous accounts. Therefore,
we split T into four disjoint substreams: TMM which holds all transactions between mem-
ber accounts, TMA which holds all transactions from a member account to an anonymous
account, TAM, which holds all transactions from an anonymous account to a member
account, and TAA which holds the transactions between anonymous accounts, such that
T = TMM ∪ TMA ∪ TAM ∪ TAA.
Figure 3 shows the repartition of transactions between these four substreams as well

as their repartition in terms of the total exchanged volume. As can be seen, transac-
tions between member accounts (i.e. belonging to TMM) represent only 30% of T while
transactions between an anonymous account and a member account (i.e. belonging to
TAM) represent almost 45% of T and only 12.4% in terms of exchanged money, mean-
ing that there are many small transactions from anonymous to member accounts. A
reason for this asymmetry is linked to the way miners are retributed in Ğ1. Recall
that money creation is done by the members themselves and that it has nothing to
do with mining, such that miners are doing the work for free by design. In order to
compensate the miners for this voluntary work, there is a special anonymous account
in Ğ1, called Remuniter, which receives donations and uses them to retribute miners.
This specific account is therefore a large hub in T and stands for almost 40% of all
transactions.

Observation 1 Almost 40% of all transactions are related to miner retribution.
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Fig. 3 The transaction stream T can be divided in four substreams: transactions between member accounts
TMM , between member and anonymous accounts TMA , between anonymous and member accounts TAM ,
and between anonymous accounts TAA . Left - Repartition of the transactions between the different
transaction substreams. Right - Repartition of the exchanged amounts between the different transaction
substreams. Notice that, although TAM represents about 45% of T in terms of number of transactions, it only
adds up to 12.4% of the exchanged volume

Removing all transactions involving Remuniter changes the transaction count reparti-
tion to: 49.2% for TMM, 28.4% for TMA, 10.3% for TAM, and 12.2% for TAA. Note that,
thanks to this specific wallet, we can easily identify the miners of Ğ1 as the outgoing
neighbors of Remuniter in TAM (i.e. all members who received money from Remuniter).
At the time we downloaded the blockchain, in March 2019, there were 158 miners.

Overview of certification and transaction streams
In this section, we present general properties of C and T in order to gain a better
understanding of their structure and dynamics. We start by studying the activities (see
Definition 5) of the certification stream C, and of the transaction stream between mem-
bers TMM. Figure 4 shows the 30 days rolling sum of these activities from March 2017 to
March 2019. It appears clearly that they follow very similar trends over this period. A first
growth period goes from March 2017 to April 2018 before a strong decrease in activity
until early October 2018. Since then, both transaction and certification activities increase,
with more volatility for transactions.

Fig. 4 30 days rolling sum of the activities (see Definition 5) of the certification stream C (red curve) and the
transaction stream between members TMM (blue curve)
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Observation 2 The certification dynamics is strongly correlated to the number of
transactions among members.

By aggregating interactions into a static graph, we obtain two induced directed graphs
G (C) and G (TMM) (see Definition 4). Figure 5 shows the in and out-degree distributions
of each graph. The out-degree of a node in G (C) is the number of certifications given by
this member, while its in-degree is the number of certifications it received. In G (TMM),
the out-degree of a node is the number of transactions initiated by this member, while
its in-degree is the number of transactions it received. First, note that there is no node
with an in-degree smaller than 5 in G (C) because the minimum number of certifications
required to become a member is set to 5 in the current implementation of Ğ1 (BL et al.
2017). Both graphs clearly display a heavy tailed degree distribution meaning that some
members are involved in many more certifications or transactions than the majority.

Observation 3 The certification graph and the member transaction graph have hetero-
geneous in and out degree distributions.

Figure 6 displays correlations between node degrees in G (C) and G (TMM). The top
right subplot shows that members tend to give more certifications than they tend to ini-
tiate transactions, especially for high degree values. The bottom left subplot shows that
nodes in-degree and out-degree values inG (C) are strongly correlated, meaning that peo-
ple who receives a lot of certifications tend to also give a lot of them, and tend to actually
give more certifications than they received.

Observation 4 In-coming and out-going activities are strongly correlated both from
certification and transaction points of views.

How do new certifications and transactions appear betweenmembers?
A key goal of this paper is to gain insight on how certifications impact transactions and
vice-versa. We therefore focus on the certification stream C and the transaction stream
restricted to identified members TMM. In this section we use a direct link-based approach
to understand how new links appear in these two streams. More specifically, we wish to
understand if a relationship between two members tends to exist in both streams and if it
rather starts with a certification (seen as a social tie) or through transactions.

Fig. 5 In-degree (in blue) and out-degree (in red) distributions. Left for G (C), and right for G (TMM)
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Fig. 6 Scatter plots of in-and-out degree correlations in G (C) and G (TMM)

Do social ties come before transactions?

When a certification occurs between two previously disconnected nodes in C we search
for the first transaction between these two nodes. This transaction can happen before
the certification, after it, or never. For 73% of certifications, the two involved nodes never
made a transaction. Instead, 16% of certifications have a pre-existing transaction, and
11% will make a transaction in the future. The top plot of Fig. 7 shows the distribution
of the delay between a certification (between two nodes in C) and the closest matching
transaction (between these two nodes in TMM). The delay tend to be small in most cases.
One possible explanation is that new members are often involved in small transactions
(welcome gifts or acknowledgments) shortly after (or before) being certified. The bottom
plot of Fig. 7 shows the distribution of the number of transactions in TMM preceding a
certification in C for these certifications that occur after transactions. Almost all such cer-
tifications occur after only one or two transactions, but in a very few cases, a certification
can happen after as many as 14 prior transactions.

Observation 5 Most certification relationships in C do not have a matching transaction
in TMM, but when they do, most are close in time.

Let us now investigate the other way round: When a transaction occurs in TMM, are the
two involved nodes already linked by a certification or will they certify each other in the
future? It turns out that 64% of all transactions from TMM occur between two members
linked by a certification relationship in C. More precisely, 42% occur between two already
certifiedmembers, while only 22% occur betweenmembers who will certify themselves in
the future. These numbers also mean that about 36% of all transactions from TMM occurs
between members who never certify themselves directly in C. We can also consider only
new transactions in TMM, that is transactions between two members who never made a
transaction before. The middle plot of Fig. 7 shows the distribution of time intervals �t
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Fig. 7 Top - Distribution of time interval �t (in days) between a certification in C and the closest matching
transaction in TMM .Middle - Distribution of the time interval �t (in days) between a new transaction in TMM

(i.e. a transaction between two members who never made a transaction before) and the closest matching
certification in C . Bottom - Distribution of the number of matching transactions in TMM preceding a
certification in C for certifications occurring after prior transactions

(in days) between a new transaction in TMM and the closest matching certification in C.
As can be seen, the majority of new transactions in TMM occurs shortly after a matching
certification in C.

Observation 6 Almost two thirds of transactions between members occur between
members linked by a certification.

Because of the constraints imposed on theWoT, the undirected version of G (C) is con-
nected and we can compute a certification distance between any two members. Because
the WoT results from social interactions, we expect that nodes lying far appart in G (C)

have a small probability of knowing each other, and therefore, of making transactions.
Figure 8 shows the fraction of nodes at different distances in G (C) as well as the frac-
tion of transactions between members occuring between nodes at different distances in
G (C). Although most nodes are at distance 3 and 4 (38% and 43% respectively) in G (C), a
large majority of transactions occurs between directly connected nodes and the fraction
decreases strongly as the distance in G (C) increases.

Observation 7 Members who make transactions without being certified are linked by
very short chains of certifications.

Connection probability

What makes two members more likely to be socially connected from a transaction
perspective? Are two members more likely to know each other if they made several trans-
actions with the same orientation or if they have made at least one reciprocal transaction?
To answer such questions, we introduce:



Applied Network Science            (2020) 5:25 Page 13 of 18

Fig. 8 Fraction of nodes at a given distance in G (C) (blue curve), and fraction of transactions between
members occuring between nodes at a given distance in G (C) (red curve). Although most nodes are at
distance 3 and 4 in G (C), a large majority of transactions occurs between directly connected nodes and the
fraction decreases as the distance in G (C) increases

C = {(
i, j

) ∈ M ⊗ M, ∃t : (t, i, j) ∈ EC or
(
t, j, i

) ∈ EC
}

(1)
−→
C = {(

i, j
) ∈ M ⊗ M, ∃t : (t, i, j) ∈ EC and 	 ∃t : (t, j, i) ∈ EC

}
(2)

←→
C = {(

i, j
) ∈ M ⊗ M, ∃t : (t, i, j) ∈ EC and ∃t : (t, j, i) ∈ EC

}
(3)

In other words,
(
ij
) ∈ C if there exists at least one certification between i and j at some

point in time,
(
ij
) ∈ −→

C if there exists only unidirectional links between i and j (either
i → j or j → i), and

(
ij
) ∈ ←→

C if there exists at least one bi-directional certification
link between i and j. Notice that ←→

C ⊆ C and −→
C ⊆ C. We use the same notations for

transactions between members:

T = {(
i, j

) ∈ M ⊗ M, ∃t : (t, i, j) ∈ ETMM or
(
t, j, i

) ∈ ETMM

}
(4)

−→
T = {(

i, j
) ∈ M ⊗ M, ∃t : (t, i, j) ∈ ETMM and 	 ∃t : (t, j, i) ∈ ETMM

}
(5)

←→
T = {(

i, j
) ∈ M ⊗ M, ∃t : (t, i, j) ∈ ETMM and ∃t : (t, j, i) ∈ ETMM

}
(6)

where ETMM is the set of links of stream TMM. Table 1 gives the repartition of inter-
actions among these sets. Although the number of certification links is higher than the
one of transactions between members, i.e.

∣
∣C

∣
∣ /

∣
∣T

∣
∣ = 2, the fraction of bidirectional

certifications is much higher than the one of bidirectional transactions:
∣
∣
∣
←→
C

∣
∣
∣ /

∣
∣
∣
←→
T

∣
∣
∣ =

3.75.

Table 1 Repartition of interactions among the sets defined by Eqs. 1 - 6
∣
∣∣C

∣
∣∣ / |M ⊗ M|

∣
∣∣
−→
C

∣
∣∣ / |M ⊗ M|

∣
∣∣
←→
C

∣
∣∣ / |M ⊗ M|

0.008 0.005 0.003
∣∣∣T

∣∣∣ / |M ⊗ M|
∣∣∣
−→
T

∣∣∣ / |M ⊗ M|
∣∣∣
←→
T

∣∣∣ / |M ⊗ M|
0.004 0.0039 0.0008
∣∣
∣T ∩ C

∣∣
∣ /

∣∣
∣C

∣∣
∣

∣∣
∣T ∩ −→

C
∣∣
∣ /

∣∣
∣
−→
C

∣∣
∣

∣∣
∣T ∩ ←→

C
∣∣
∣ /

∣∣
∣
←→
C

∣∣
∣

0.318 0.271 0.389
∣
∣∣C ∩ T

∣
∣∣ /

∣
∣∣T

∣
∣∣

∣
∣∣C ∩ −→

T
∣
∣∣ /

∣
∣∣
−→
T

∣
∣∣

∣
∣∣C ∩ ←→

T
∣
∣∣ /

∣
∣∣
←→
T

∣
∣∣

0.535 0.497 0.715
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Observation 8 Reciprocity of relationships in the social network is stronger than reci-
procity in the transaction network.

Table 1 also shows that the probability for two members to be linked in one stream
increases a lot if they are connected in the other stream. More precisely, when two mem-
bers are connected by a certification, they are almost eighty times more likely to make a
transaction than two random members. Similarly, when two members made at least one
transaction, they are 67 times more likely to be linked by a certification.

Observation 9 The probability two nodes to be linked in one stream is orders of
magnitudes larger if they are linked in the other stream.

In addition, reciprocity of transactions seems to play an important role in the probability
of having a social tie. Indeed, two members having done at least one reciprocal transac-
tion are almost ninety times more likely to be connected in the WoT than two random
members.

Observation 10 Two members involved in reciprocal transactions are very likely to be
socially connected.

We now study how the number of transactions between two members influence
their probability of having a social tie. We denote the number of transactions involving
members i and j by:

∣
∣τij

∣
∣ = ∣

∣{(t, i, j
) ∈ ETMM

}∣∣ + ∣
∣{(t, j, i

) ∈ ETMM

}∣∣ (7)

And we denote the set of member pairs linked by k transactions by

Tk = {(
i, j

) ∈ M ⊗ M,
∣
∣τij

∣
∣ = k

}
(8)

Figure 9 shows the fraction of member pairs linked by k transactions that are also linked
by a certification. The blue plot shows

∣
∣
∣Tk ∩ ←→

C
∣
∣
∣ /

∣
∣Tk

∣
∣ as a function of k, while the red

curve shows
∣
∣Tk ∩ C

∣
∣ /

∣
∣Tk

∣
∣. These fractions globally increase with the number of trans-

actions k. More than 80% of members linked bymore than five transactions are connected
in the WoT.

Fig. 9 Fraction of member pairs linked by k transactions that are also linked by a certification. The blue plot

shows
∣∣∣Tk ∩ ←→

C
∣∣∣ /

∣∣∣Tk
∣∣∣ as a function of k, while the red curve shows

∣∣∣Tk ∩ C
∣∣∣ /

∣∣∣Tk
∣∣∣ (see Eqs. 1 - 8)
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Observation 11 The probability for twomembers to be socially connected increases with
the number of transactions they make.

In conclusion, this section shows that certifications are often the first kind of link
appearing between two Ğ1 members, and that transactions occur afterwards. More-
over, these transactions do not happen randomly but constrained by the social network:
they preferably take place between friends or between friends of friends. In addition,
we showed that the existence of a social relationship between two members increases
the probability of making a transaction. Conversely, the probability of being connected
with a certification increases when members make transactions, especially when they are
bidirectional. In the next section, we will investigate these questions further using more
advanced concepts mixing time and structure.

Certifications and transactions neighborhoods
In previous section, we studied how new links occur in C and TMM using a direct link-
based approach. In this section, we go further using the topology of both streams to gain
more insights.
A key concept in graph theory is the one of neighborhoods. For a directed link stream

L = (T ,V ,E) the definition of the neighborhood of node v ∈ V , as given in Latapy et al.
(2019), is the following cluster:

NS(v) = {(t,u) , (t,u, v) ∈ E or (t, v,u) ∈ E} (9)

A neighborhood is thus composed of temporal nodes rather than simple nodes for static
graphs. We also consider the neighborhood of the undirected induced graph G(S):

NS(v) = {u ∈ V , ∃ (t,u, v) ∈ E or ∃ (t, v,u) ∈ E} (10)

In other words, NS(v) contains all nodes which interacted with v ∈ V at least once,
while NS (v) keeps track of interaction times.
In addition to neighborhoods, we propose to study triangles in C and TMM, which are

a famous and very important concept in network theory. They intuitively convey the idea
that people I interact with tend to also interact between themselves. A commonly used
metric mixing triangles and neighborhoods in graphs is the clustering coefficient. The
clustering coefficient of a node is the density of its neighborhood, and the clustering
coefficient of the whole graph is defined as the average value over its nodes.
The average clustering coefficent for G (C) (resp. G (TMM)) is 0.49 (resp. 0.31), while

the average for G (TAA) is 0.13. Note that, by construction, the clustering coefficients
for G (TAM) and G (TMA) are both equal to 0. In terms of triangles, G (C) contains 6589
triangles, G (TMM) 1990 triangles, and G (TAA) only 393. These values are much higher
than for random graphs with the same degree distributions (about 23 times higher for
G (C), and about 4 times higher for G (TMM)), meaning that both G (C) and G (TMM) are
very clustered networks. Figure 10 shows the distributions of the node clustering coeffi-
cients in both networks. Note that, although their average clustering values are similar,
the distributions over nodes have different shapes.
The distribution for G (TMM) exhibits two peaks around 0 and 1 which are due, to

some extent, to nodes of degree 1 and 2 in the transaction graph, while the certification
graph does not have nodes of degree less than 5 because of the minimum number of
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Fig. 10 Node clustering coefficients distributions and correlations in Left - G (C) and G (TMM), Right - the
3-cores of G (C) and G (TMM) to avoid small degree effects on the clustering

certifications required to become a member. The right plot of Fig. 10 shows the same dis-
tributions for the 3-cores of these graphs, in which nodes of degree 1 and 2 were removed.
We can see that, although there are less nodes with clustering 0, there are still nodes
with very high clustering values in G (TMM), meaning that some members tend to make
transactions in a very clustered way despite a less clustered certification neighborhood.

Observation 12 Both G (C) and G (TMM) are strongly clustered. However, the cluster-
ing coefficient distributions have different shapes. Some groups of members tend to make
transactions in a very clustered way.

Previous results are built on induced graphs and so they do not take time into account.
Clustering coefficient has been extended to link streams (Latapy et al. 2017), but provide
little insight here. Indeed, the slow dynamics of C make results very similar to the ones
obtained for the induced graph G (C), and TMM is a very sparse stream such that there is
almost no time instant where transactions form triangles.
We propose another stream concept to study triangles with time: directed k-closure of

links, where k is an integer larger than 1: the 2-closure, for example, is the time one has to
go back to find a link beween the same nodes but in the opposite direction. The 3-closure
is defined as the amount of time required to find a triangle containing the considered link.
The left plot of Fig. 11 illustrates 2 and 3-closures in a simple case. The 2-closure of link

(6, a, b) for example is equal to 4 since we have to go back to t = 2 to find a link in the
opposite direction, namely link (2, b, a). The 3-closure of the same link (6, a, b) is equal to
5 since, this time, we have to go back to t = 1 to find the triangle (6, a, b), (4, b, d), (1, d, a).
Here we examine both the 2 and 3-closures for C and TMM. The right plot of Fig. 11

shows the k-closure distributions for the two streams. The 2-closures for C is generally
smaller than for TMM, meaning that people tend to certify back faster than they make
a transaction in the other direction. The 3-closures distribution of C and TMM are very
similar which seems to suggest that, although there are less triangles in TMM than in C,
they tend to appear within the same time frame.
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Fig. 11 Left - Illustration of the 2 and 3-closures. The 2-closure of link (6, a, b) is equal to 4 since we have to
go back to t = 2 to find a reversed link (2, b, a). The 3-closure of link (6, a, b) is equal to 5 since we have to go
back to t = 1 to close the triangle composed of (6, a, b), (4, b, d), (1, d, a). Right - The distribution of 2- and
3-closures for all links in C and TMM . Note that we only consider links with finite k-closures, links with infinite
values being ignored

Observation 13 Users certify back faster than they make a backward transaction. On
the other hand, triangles are built within similar time frames in C and TMM.

Conclusion
We studied a recent cryptocurrency which, despite its relatively small size, provides a
very interesting and publicly available dataset to study transactions within a social envi-
ronment. Because the data has both a structural and temporal component, neither a pure
static graph nor a time serie basedmodel are well suited for its study.We proposed here to
rely on the link stream formalism to study the streams of certifications and transactions.
We showed that certifications are often the first type of link occurring between two

previously disconnected nodes, suggesting that members of Ğ1 start to meet at social
events before making transactions. In this context, the social network shapes the way
transactions occur: even when they occur between two members without a certifica-
tion relationship, transactions have a much higher probability of occurring between
two socially close nodes. Investigating further, we showed that members tend to have a
transaction neighborhood included within their certification neighborhood.
We also studied clustering coefficient of certifications and transactions and discovered

that some members tend to make transactions in a very clustered way. We also studied
the k-closure of certifications and transactions and found that users certify back faster
than they tend to make a backward transaction, meaning that certification relationships
become bi-directional faster than transactions.
These results might be specific to this particular cryptocurrency and call for further

investigation to explore their generality, though. Indeed, Ğ1 is still very young and used
mostly by a limited number of currency-interested people. As the currency will age, we
expect Ğ1 usage to grow, and that time will play a more important role in the study of the
interplay between social ties and interactions. Another interesting direction would be to
compare the properties of Ğ1 with other social systems with transactions, like for instance
Steemit (Steem 2018).
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