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Beyond Hosting Capacity: Using Shortest Path Methods to Minimize
Upgrade Cost Pathways

Nicolas Gensollen, Kelsey Horowitz, Bryan Palmintier, Fei Ding, and Barry Mather

National Renewable Energy Laboratory, Golden, CO, 80401, USA

Abstract—This paper presents a graph based forwardlooking
algorithm applied to distribution planning in the context of
distributed PV penetration. We study the target hosting capacity
(THC) problem where the objective is to find the cheapest
sequence of system upgrades to reach a predefined hosting
capacity target value. We show that commonly used short-
term cost minimization approaches often lead to suboptimal
long-term solutions. By comparing our method against such
myopic techniques on real distribution systems, we show that
our algorithm is able to reduce the overall integration costs by
looking at future decisions. Because hosting capacity is hard
to compute, this problem requires efficient methods to search
the space. We demonstrate that heuristics using domain specific
knowledge can be efficiently used to improve the algorithm
performance such that real distribution systems can be studied.

Index Terms—hosting capacity, optimization, decisions, short-
est path.

I. INTRODUCTION

The deployment of distributed photovoltaic systems (DPV)
in the United States has been rapidly increasing over the last
decade, and this trend is likely to continue. This growth raises
some challenges since distribution systems were not initially
conceived to host large amounts of distributed generation.
Various studies have reported problematic consequences of
high penetration on certain distribution systems, including
over-voltages, line thermal limit violations, or reverse power
flows [1] [2]. When these issues are anticipated to arise in
response to the interconnection of a specific DPV system,
utilities mitigate them using a variety of possible solutions,
ranging from modifying voltage regulating device set points
to the physical addition of new components (e.g. transform-
ers, voltage regulators, substation load tap changer (LTC),
capacitor banks, new distribution lines) [3] [4].

In the US, this problem is typically tackled with a short-
term cost minimization approach. When the penetration on a
circuit reaches the point where grid operating violations start
to occur, the cheapest system upgrade that resolves the issue
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publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this work, or allow others to
do so, for U.S. Government purposes.

Fig. 1. Target Hosting Capacity (THC) Problem. The two vertical lines
represent two possible HC targets, and the two colored lines display two
possible sequences of actions. Applying the cheapest action first (orange
line) may be suboptimal depending on the target. Here, for the higher target
THC, applying the blue sequence provides a better long-term option, despite
a larger up-front investment.

is implemented. Being more proactive in choosing the system
upgrades may substantially reduce the overall integration
costs, although this practice remains rare in the US. We
propose in this paper a graph based forward-looking method
to address this problem in the context of hosting capacity
(HC) [5], which provides an estimate of how much PV can be
added to a given system without violating operational limits.

More precisely, we study the target hosting capacity (THC)
problem where a system planner has to decide which se-
quence of system upgrades to implement in order to reach a
target value of hosting capacity (Fig. 1). This problem arises
when utilities want to achieve a certain penetration of DPV on
a feeder such as to defer transmission upgrades by offsetting
load, or to achieve a renewable energy target. We focus on the
costs of these upgrades such that we wish to find the cheapest
sequence of upgrades that would increase the HC value to a
given predefined target.

We show that commonly used myopic greedy approaches
can lead to suboptimal long-term solutions, sometimes very
far from the global optimum. Taking into account future
decisions can greatly lower the overall integration cost. A
key challenge of this work is that the penetration of DPV
is unknown beforehand, both temporally and spatially, such
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that computing the HC of a given system is often difficult.
Depending on the spatial distribution and size of the DPV
systems, and the type of violations considered, different
results can be obtained [6]. In addition, the computation of
HC traditionaly relies on Monte-Carlo simulations which are
time consuming by nature [6] [7]. By looking at diverse
sequences of actions and evaluating them, the THC problem
relies heavily on many HC computations which can make the
problem quickly intractable. To overcome this challenge, we
demonstrate the effectiveness of domain-informed heuristic
methods for speeding the search by reducing the number of
states visited.

This paper is organized as follows. Section II introduces
notation and details the problem formulation. Section III
briefly introduces a software implementation. Section IV
presents the main ideas and features of the proposed method.
Finally, section V describes results obtained for the EPRI J1
feeder.

II. PROBLEM OVERVIEW

A. Notation

This work considers distribution systems on a feeder-by-
feeder basis [7]. At the start, a feeder has an initial hosting
capacity, denoted by H0, that can be reached without any
modifications to the system. Out goal is to reach a given HC
target H? > H0 by implementing system upgrades sequen-
tially. Choosing one of these upgrades and implementing it
will be called an action (or a decision) and will be denoted
by d. We use the variable k ∈ N to denote the time-step. The
state of the system depends on k and will be denoted by sk.
We denote by Sk the state space at step k, and S = ∪Sk the
full state space.

Depending on the system state, we have a set of possible
actions; for example, in a state with voltage violation, possible
actions could include: adding a new regulator, changing the
settings on an existing regulator, or adjusting the PF of the
DPV inverters.” We denote by Dsk the set of available actions,
at step k, for the system being in state sk. As for the state
space, D = ∪Dsk represents the full set of actions.

Any action d ∈ Dsk , i.e. any upgrade or sequence of
upgrades on system sk, comes with a strictly positive cost
Ck (sk, d). This cost can be a function of time if we expect
the price of technologies to evolve for instance. It can also
represent diverse notions such as equipment costs, installation
costs, or maintenance costs... In this work, costs represent
the cost of the equipments (if any) plus the cost of the
installation/modification and come from real utility costs [8].
Because of the available data for this work [8], costs do not
depend on time nor on the state of the system, but only
on the action itself. Therefore, we simplify the notation to
C (d). In other words, changing the setpoints of a regulator,
for instance, will always incur the same cost at any point in
time, and no matter what decisions we took before.

B. Decision graph

It is convenient to picture the problem as a decision graph
where a node represents a state sk and an edge represents an
action d. In this representation, an edge points from node sk
to node sk+1 if the action led the system from state sk to
state sk+1. In addition, each edge has a weight associated to
it representing the cost of applying this action. We call Going
from sk to sk+1 by implementing d a ”transition,” denoted
by sk+1 = M (sk, d), where function M : (S,D) −→ S
is called the transition model. Depending on the problem,
M can be a simple analytic expression, or a more complex
model. Likewise, M can be a determistic model, that is
applying action d to system state sk always leads to state
sk+1, or a stochastic model. The transition model used for
the THC problem is relatively complex and will be detailed
in section IV-C.

If a node sk holds the information for the state it represents,
the path from the root s0 to this node contains the sequence
of upgrades required. This includes the sequence of decisions
that can be used to compute the total cost to get to the
node. For most problems, the decision graph is actually a
tree such that this path is unique. For some problems, it
might be possible to reach the same node using different
sequences of actions such that the decision path is the shortest,
i.e. cheapest, path from the root to the node. With a slight
abuse of notations, we denote by C (sk) the cost of the
shortest/cheapest decision path going from the root to sk.

A node is called a solution node if the HC of the system
is larger or equal than the target: Hsk ≥ H?. One challenge
is that the graph is unknown beforehand, we only know the
root, i.e. the initial state. Moreover, we often have no prior
information on the solution nodes. It is also possible for the
set of solution nodes to be empty, i.e. the target is unreachable
for the feeder given the available actions. This makes the
problem similar to a graph search problem. Indeed, using a
basic breadth-first-search algorithm would reveal the graph
until we find solutions or run out of actions. However, we
face two main issues: First, the number of nodes in the de-
cision tree grows exponentially with the number of decisions
available. Second, and maybe more problematically, the only
way to check whether a node is a solution or not is to compute
the HC of the system it represents. This computation typically
relies on Monte-Carlo simulations, and is computationally
expensive. Minimizing the number of nodes we expand is
therefore a key consideration and one that is not provided by
pure graph search techniques.

III. SHORTEST PATH TOOL

This section describes the software implemention of our
Shortest Path THC tool to introduce more of the problem
structure and code architecture used. The tool is developed
in Python and uses OpenDSS for simulation. It was first
developed to solve generic sequential decision problems with
THC being one of the key use cases. As a result, most of
the tool’s components are generic and can be used to solve
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Fig. 2. Code structure of the shortest path target hosting capacity tool.

different problems. Figure 2 shows the code architecture and
the relations between the main classes of the tool:

• State graph: Data structure that keeps track of visited
nodes as well as the decisions linking them together.

• Model: Implements the details of the problem. Describes
the decision space, the costs, and the transition model.

• Algorithm: Uses a state graph and a model to find the
solution nodes.

• Feeder: Low level class that translates decisions to
OpenDSS commands.

• OpenDSSdirect: Direct DLL linking Python and
OpenDSS

The main idea is that an algorithm class needs a state graph
class to store what has been explored so far, as well as a
Model class to expand nodes. In other words, the Model class
implements the transition functions that basically compute the
next state from a given state and a decision. At this level,
decisions are stored as Python objects and the Feeder class is
responsible for the translation between them and OpenDSS
text commands. It is also responsible for implementing the
PV deployments and supporting sudden changes of states at
the DSS level, which happen when the algorithm decides to
move to another node in the state graph. OpenDSSdirect is a
Python library that interfaces the OpenDSS engine enabling
cross-platform support.

IV. PROPOSED METHOD

A. Informed Heuristics

In general, shortest path algorithms maintain a stack of
nodes to expand, initialized with the root, or initial, state.
Expanding a node consists of applying all the available deci-
sions at this node and creating one child node per decision.
In other words, a child node sk+1 = M (sk, d) represents the
state of the system if we apply decision d ∈ Dsk on node sk.
The child nodes are then inserted in the stack of nodes to be
expanded.

Informed heuristic search techniques [9] focus mainly on
how nodes should be inserted in the stack. The main idea
is that nodes are inserted according to a ranking function
F : S −→ <. For example, C (sk) =

∑
i≤k Ci (si, ai)

will expand in priority the nodes at the end of the cheapest
branches. This is effectively the Dijkstra algorithm [10].
Ranking functions used by informed heuristic searches can be
written in the general form F (sk) = C (sk) + U (sk) where
C (sk) is the cost from the root to the current node, and U is
a heuristic function estimating the cost to go from the current
node to the destination. One of the most famous algorithms
of this sort is called A* [9] and aims at finding shortest-paths
in graphs. In a road graph for example, the heuristic used by
A* can be the straight-line distance from the current node
to the destination. The challenge here is that, contrary to a
shortest path problem where we know the destination, we
do not have much information on solution nodes. Our only
piece of information is that they should satisfy Hsk ≥ H?.
The heuristic function we use computes the cost of H?−Hsk

by using a per-unit estimation cost based on previous actions:

U (sk) = (H? −Hsk)
C (sk)

Hsk −H0
(1)

Another key aspect revolves around using the costs of
previously found solutions as bounds for the search. More
precisely, if the cost from the root to the current node plus
the cost of the action considered is larger than the best known
solution, then evaluating this action is pointless since it will
lead necessarily to more expensive solutions. This approach,
known as branch and bound [9] [11], is a classic and very
useful way of pruning the graph as long as one can provide
good bound values. A bound value can either be provided
by the user as the cost of an already known solution, or as
the maximum budget available. If no information is known
beforehand, the initial bound is set to infinity such that
nothing will be pruned until a complete solution is found.
In the present work, we do not assume any prior information
such that bounds have to be discovered.

Because of this, finding a good solution quickly, even if
not the optimum, provides a key benefit. This means that the
search algorithm should be able to quickly identify promising
regions of the space, but keep the ability to change its focus
quickly if needed. In this work, we use a simulated annealing
heuristic [12] to address this exploration vs. exploitation
problem. The main idea is that, non-promising actions might
get picked with a time-decreasing probability. In its early
stage, the algorithm will have the possibility to explore actions
that might look poor at first but might turn out to be good
when looking further into the future. While in the late stages,
the algorithm will focus on promising regions discovered so
far. An important point is that these heuristics only target the
ways nodes from the queue are evaluated, they do not impact
the optimality of the solution returned. As long as the queue
is emptied, either by evaluation or by pruning, the solution
returned will be the global optimum.
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B. Algorithm

Initialize empty stack S = ∅;
Provide transition model M : (S,D) −→ S;
Provide heuristic function F : S −→ <.;
Compute H0;
Set the target H? > H0;
Initialize cost of best solution c? =∞;
Create root node: root = (H0, C = 0, k = 0);
Add root node to the stack: S ← root;
while |S| > 0 do

With probability p, pick a random node sk from the
stack;

With probability 1-p, pick top node sk from the
stack;

for decision d ∈ Dk do
Restore state sk;
if C (sk) + Ck (d) ≤ c? then

Compute child sk+1 = M (sk, d);
if sk+1 is a solution node then

c? = MIN {c?, C (sk+1)};
else

Compute heuristic value: F (sk+1);
Insert child in the stack according to its

value: S ← sk+1;
end

end
end

end
Algorithm 1: Shortest path Target Hosting Capacity

Algorithm 1 explains the main steps of the search in
pseudo-code. The main inputs are the transition model M :
(S,D) −→ S that computes the state sk+1 resulting from
applying an action d ∈ D to state sk, and the heuristic
function F : S −→ < that attributes a real value to a state.

An empty stack is initialized and the root node, i.e. the
initial state, is pushed to the stack. In its initial state, the
system can host a given number of PVs ”for free”, i.e. without
having to pay for any upgrades, such that we have an initial
HC H0 ≥ 0 with an associated cost C0 = 0. The cost of the
best known solution is set to infinity, and a target H? > H0

is provided. Obviously, if the target is too small, any decision
will reach it, and if it is too high, the problem might not have
a feasible solution.

The stack holds the states which still need to be expanded,
but ranks them according to the heuristic F such that the
node on top of the stack is the best node according to F . As
discussed in section IV-A, we introduce a probability p, which
might be time-dependant, to select a random node rather than
the top one. When selecting a node from the stack, we first
need to restore the state of the system. In other words, all the
decisions leading from the root to this node are re-applied on
a cleaned system.

Expanding a node sk is the operation that consists in
computing all the children nodes sk+1 = M (sk, d) , ∀d ∈

Dsk . Since this operation is time consuming, we compute a
transition only if the current cost C (sk) plus the cost of the
decision Ck (d) is smaller than the cost of the best solution
found so far c?. It is possible to add some filtering on the
decision set Dsk to lower the number of decisions to evaluate.
For example, we might remove actions that does the exact
opposite of what was done in the previous time step since
this is equivalent to spending money to do nothing. We might
also remove actions applying to the equipment we changed
in the previous time step.

If a child node is a solution node with a better cost than the
best solution found, then the best solution is updated. Oth-
erwise, the child node is inserted in the stack at the ranking
position given by the heuristic F . Another implementation to
speed the algorithm up is to insert only child nodes that have
a better HC than their parents.

C. Transition Model

Unlike traditional shortest path problems where the tran-
sition has a closed form set of equations, the transition
model M : (S,D) −→ S used for the target hosting
capacity problem relies heavily on Monte-Carlo simulations
to estimate the hosting capacity. If we wish to evaluate the
impact of a decision d1 on the HC, we have to consider
multiple PV deployments as well as multiple load scenarios.
In this work, we sample the locations for the PVs from a
uniform distribution, meaning that all buses that can physi-
cally host a PV are equally likely to be selected (a bus can
also host more than one PV if it gets selected at multiple
times). Sampling from this distribution, we add PVs until a
voltage violation occurs (over voltage or under voltage). Other
type of violations such as line thermal violations are being
implemented but are not considered in the present work.

For each sample PV deployment, we consider two sce-
narios: peak load and minimum load and stop as soon as a
violation occurred for at least one of these scenarios. The
tool uses random seeds to make sure that all decisions are
evaluated on the same PV deployments, which allows a fair
comparison. In this sense, a sample can be thought of as a
PV deployment scenario that will be played every time we
evaluate a decision. Let Nsamples be the number of samples
used to compute a transition. This means that we compute the
HC of the feeder 2Nsamples times every time we evaluate a
decision (peak load and min load).

Obviously, the parameter Nsamples has a strong impact
on the algorithm’s speed. The tool lets the user specify the
number of samples (which might be a function of time if
more precision is needed for some specific periods) as well
as the load scenarios to consider. In this way, it is possible to
run pre-analysis, with a poor precision, on a laptop to make
sure that the problem settings are correct before increasing
the number of samples and running it in parallel.

V. MAIN RESULTS

We tested our approach using the EPRI J1 test feeder which
is a real-world, full-scale distribution feeder. Table I presents
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Fig. 3. Decision tree obtained on the EPRI J1 feeder. The size of a node is
proportional to its cost (the cost of the decision path leading to it), and its
color indicates the hosting capacity reached.

the system upgrade options (decisions) and corresponding
costs obtained from [8]. It also includes selection parame-
ters. For example, location, phase, and control settings are
required when adding a new capacitor bank. This makes the
decision space grow extremely fast requiring restricting the
possibilities for some parameters. It is intractable to consider
all buses as potential locations since some locations do not
make domain sense or are so close that the results would
be the same. One way to deal with this kind of issues is to
rely on rules of thumbs used by power system engineers on
the field. Concerning capacitor banks additions, one rule of
thumb used in practice is to place the new capacitor 2/3 of
the way down the length of the feeder or of the line section
from the last capacitor. In the present work we use this as a
way to filter relevant locations. Another filter could also be
the physical space available at each bus if available.

Figure 3 shows the decision tree obtained on the EPRI
J1 feeder with decisions described in table I. The decision
set has 63 decisions and is constant over time. The peak
and minimum loads are also assumed to stay constant over
time but the framework is readily extendable to evolving
load conditions. The graph of figure 3 contains 1195 nodes,
meaning that 1195 nodes were visited by the algorithm during
the search. The full graph with the same number of levels
contains

∑k=4
k=0 63

k = 16007041 nodes, meaning that the
algorithm was able to find the optimum solution by looking
at only 0.0075% of the possible nodes. For clarity, the nodes
are organized in concentric circles, each circle corresponding
to a given decision step.

Fig. 4. Target reaching paths and the distributions of decisions for k ∈ [1, 3]

As is clearly visible, some decisions (nodes in light colors)
do not improve HC and might even deteriorate it. Some
particularly bad decisions result in violations before any
PV deployment and therefore in a null HC. The optimum
decision path is represented by the thick blue lines and
is, in this example, a sequence of three actions: changing
the LTC setpoints first and two voltage regulator setpoints
modifications after, for a total cost of 8000+ 2500+ 2500 =
13000USD. This means that in this example it is better to
first spend more than three times the cost of the cheapest
decision available (2500USD), which is something that a
cost-minimizing greeedy approach would not capture.

Although the optimum is reached at k = 3, the algorithm
still explores some alternate paths further to ensure there is
no better solutions. As visible on figure 3, it stops at k = 4
because it could not find any node in k = 5 with a potential
better HC with a smaller cost. Note that this could have been
possible because the cheapest possible cost, regardless of HC
improvements, at k = 5 is 5 × 2500 = 12500USD, slightly
less than the optimum found.

The blue lines on figure 3 shows the optimum decision path
for this example. Nonetheless, when running the algorithm,
other decision paths reaching the target are found. Figure 4
shows what these paths are doing in terms of nodes visited in
the graph and in terms of decisions taken. The top left subplot
shows the paths in terms of node IDs. All path starts at node
0 (i.e. the initial state) at k = 0, at k = 1 there is a very small
diversity of nodes lying on these paths since there are only
two nodes visited (2 and 3). As k increases, the diversity of
possible nodes grows.

The pie charts of figure 4 shows the distribution of deci-
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TABLE I
DECISIONS CONSIDERED, RELATED PARAMETERS, AND COSTS

Upgrade option (decision) parameters costs
Change the setpoints of existing regulators vreg, band 2500 USD/Unit
Change the setpoints of existing capacitor banks controlON, controlOFF 7200 USD/Unit
Change the LTC control settings vreg 8000 USD/Unit
Add new capacitor banks location, phase, var, controlON, controlOFF • 600 kvar: 10723 USD/Unit

• 900 kvar: 13747 USD/Unit
• 1200 kvar: 32200 USD/Unit

Add new regulator location, phase, vreg, band 55000 USD/unit
Remove existing capacitor - 3000 USD/unit

sions on these paths for k ∈ [1, 3]. At k = 1, we can see
that about 72% of the paths change the LTC settings to 120
while the rest also change the LTC settings but with 121 as
a setpoint. At k = 2 and k = 3, all decisions are voltage
regulator setpoint modifications but the diversity increases as
the best decision depends on the history of each path. We can
also see that some paths reach the target at k = 3 (like the
optimum path) and other at k = 4.

Figure 4 also shows that using a cost-minimizing greedy
approach would necessarily give more expansive solutions (if
any) since all the target-reaching paths, that were not pruned
because of prohibitive costs, start with the expensive LTC
decision rather than cheaper ones like setpoints modification
on regulators or capacitors.

VI. DISCUSSION

With these limited set of decisions, the best sequence
of actions is often a combination of modifications on ex-
isting equipments (LTC, regulators, capacitor banks) rather
than adding new equipments to the system. Given the cost
difference (2.5kUSD to change a regulator setpoint and
55kUSD to add a new regulator for example) this is easily
understandable. Nonetheless, adding other decisions—e.g.
advanced communications and controls, relocating existing
equipment—and looking further in the future (by setting
more aggressive targets) is expected to result in even more
situations where more expensive upfront investments prove
the optimal approach to higher hosting capacities. This also
means that we could see very different paths leading to the tar-
get: long paths implementing many inexpensive decisions and
shorter paths implementing a few more expensive upgrades.
Looking at all these paths, and not just at the optimum one,
could provide some insights into the ”preferable” sequence
of actions. In the same way Google Maps gives multiple
itineraries to reach a destination, leaving the ”highway vs.
pretty back roads” choice to the user could provide different
solutions with similar costs, leaving the final decision to the
planner.

VII. CONCLUSION

We propose a new method for the THC problem in the con-
text of distribution planning. We show that our approach, by
looking into the future, is able to perform better than myopic
upgrades commonly applied in U.S. distribution planning.
The problem becomes quickly intractable such that innovative

techniques to search the space efficiently are needed. We
present some promising techniques using adaptations to tra-
ditional shortest path algorithms. These approaches could be
very useful for utilities to reduce the costs of system upgrades,
or by providing a cost reference against which other solutions
could be compared. Future work involves adding diversity to
the decision space and enabling parallelism such that long
simulations can be run in a high performance computing
environment.
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